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Abstract :

This papers presents new class of spherically symmetric solutions for charged
anisotropic fluids in general relativity by using generating function. We have found
expression for different physical variables.
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1. INTRODUCTION

Several workers in general relativity have focused their mind in the study of
anisotropic fluid spheres [2, 6, 18, 19].

In case of problems for massive objects in general relativity, the matter distribution
Is usually assumed to be locally isotropic. However, in the last few years theoretical studies
on relativistic stellar models indicate that some massive objects may be locally anisotropic
[1, 3, 8]. There are a number of interesting solutions that have provided insight into the
effects of anisotropy on star parameters [4, 6, 7]. However, many of these solutions have a
limited applicability to astrophysical situation since they do not satisfy certain physical
restrictions usually imposed upon density and pressure viz., that the pressure should not
exceed energy density (dominant energy condition) and that derivatives of pressure w.r.t.
density should be less than or equal to unit. [1, 22, 23] macrocausatity conditions.

In recent years the solutions of Einstein’s field equations corresponding to fluid
distribution with anisotropic pressure have generated great interest among physicists
(Bowers and Liang [3], Cosenza et al. [4], Herrer et al. [6], Ponce de Leon [12, 13, 14];
Bayin [1], Stewart [22], Singh and Singh [17], Maharaj and Maartens [9,10]. These solutions
are relevant in the study of relativistic astrophysics as model of compact object which has
anisotropic pressure (Rudeman [16]. Recently Rago [15] has presented an anisotropic
solution which is a generalization of static solution of isotropic fluid sphere (Berger et al.)
[2]. Singh et al. [18-20] have studied static anisotropic fluid spheres with non-uniform
density and in higher dimensional space-time. The charged matter distribution problems in
general relativity also have received considerable attention. Patino and Rago [11] have found
some new solutions for charged fluid spheres. Singh et al. [20] have extended Gaete and
Hojman’s work [5] to the case of magneto fluids.

This paper provides some new class of solutions for charged anisotropic fluid spheres
to general relativity by extending and using the work of Rago [15] in presence of an

electromagnetic field. We have also found expression for physical variables like p.,p,p,,

etc.
2. Field Equations and Conventions
We will consider the line element is given by
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(2.1) ds® =e'dt* —e*dr® —r?(d6* +sin’0d¢®)

where v and A are functions of radial coordinate r alone. Einstein’s field equation are

1
22) Ry~ Ry, =-8x(T, +E,)

Where the energy-momentum tensor Tj; for anisotropic fluid distribution is defined by
(23) T;= (P + pr)uiuj i pJ_)Xin

where U’ is the fluid four — velocity vector U' = Sze_‘)lz

,Xi is unit space-like vector in the

radial direction X' = Sile‘“z ,pm IS the energy density of matter, pr is the pressure in the

direction of X, and p, is the pressure on the two-space orthogonal to xi.
The energy-momentum tensor of electromagnetic field is given by

(24) By= 4_];_E|:gk€|:iij€ - %giijiFki:|

where Fjj is the electromagnetic field tensor defined in terms of the four-potential Ai as
(2.5) Eij = Aj,i —Ai'j

The electromagnetic field equations are given by

(26) Ry +F,;+F;=0

2.7) Fl:j=4n)'

Here J' is the four-current density. The combined Einstein-Maxwell equations for
line element (2.1) can be expressed as

2 i
(2.8) 8mp,, + ?—2 —e™ [l — iJ + L

2 2

rror)
(2.10) 8mp, +?_42 — %(Du 02’2 B x’zo’ N U';x]
(211) p; +(p, +pm)%’=%(pL _pr)+87%r4 dd—ciz

where

(2.12) Q(r)= 4njc: r’p.dr

is the charge within a sphere of radius r and charge density p, is related to the proper charge
density p, by

(2.13) p, =p.e"'?

Equation (2.8) can be integrated to given
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2m(r ?
0,9
r r
where we have introduced the mass function m(r) of the fluid distribution defined as
QQ )dr
r
By use of equation (2.11) and (2.14), from equation (2.9), we have

2 2
(2.16) 8npr—Q—4+i2:{ —2—m+Q—}[l_2{p;_%

(2.14) et =1

(2.15) m(r) :jor(4npmr2 +

2 2

r r r r r
QQ’ }
-p,)— Ir(p, +
(P.—P) 4nr4} (P +Pm)
Now, we define a generating function
2
g
(2.17) G(r) = QZ
1+8nprr2—r—2

And an anisotropic function

(2.18) W(r) = 2P =P 5y

(Pn+P))
With help of equation (2.15), (2.17) and (2.18) equation (2.16) can be written as
1-G+w)1-39-GT) QQ’

2.19) p! =
C1) P T e eow) T 20+ GowW)

2 '
B Sk L) {1—G—G’r—(1+G—G’)—2+ 2QQ G}
8nr’G(L+G-W) r r
It is clear that for given G(r), W(r) and Q(r) as known functions of r, the linear

differential equation (2.19) can be integrated to give the general solution
(2.20) P. = e P, + jCeI “ar]
where Po is an arbitrary integration constant and function B(r) and C(r) are given by
(1-3G-GT)(1-G+W)

rGl+G-W)

QQ’ 1-G+W)
21r*(1+ G —W) 8mr’g(l+G — W)

{1_25_[“@_;_ZQQ’jG_(l_Q_jjgr}
r r r r

Once, pr is known, the matter density pm can be easily calculated from equations (2.15) and
(1.17) obtaining

(2.21) B(r)=

(2.22) C(r) =
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' 2
(2.23) 8mnp,, = i{l— G(L+ 24np,r* +8mp’,r’ — 2QQ' + Q—Z}
r r r
2 2
—G’[r+8nprr3 _QT_?_ZJ

After obtaining pr (r) and pm (r), the tangential pressure P, can be found from equation (2.18)

W(Pm +P:)
224) p, =p, ——Pm F)

Finally taking into account equations (2.11) and (2.14) — (2.17) the metric coefficients can
be expressed as

2
(2.25) e = G(1+ 8np,r* — Q )

r_z
2
(2.26) e° = A—exp[jﬂ}
r

rG
Here AZ is also an integration constant.
3. Illustration of the Method

We should like to point out that any given function G(r) and change distribution Q(r)
generate static, anisotropic spherically symmetric solutions of Einstein-Maxwell equations.
For physically meaningful solution the generating function G must satisfy some general
requirements. Assuming non-divergent pressure at the origin, the regularity conditions at the

originr =0 [m(n/r =0, Q?/r> — 0, e* > 1*" — 0] imply that IirEIG(I’) =1.1fG=1,
t—

W =0 (pr= P, ) and Q = 0 one obtains Minkowski flat space-time.
If we consider

(32) Q=¢e
-
(3.3) e =(1——M+(:—2]
2
(3.4) e":[l—ﬁ+e—2j
r r

By this way one gets, po = 0 in equation (2.20), a corresponding vacuum Reissner —
Nordstrom solution, irrespective of the choice of the anisotropic function. Any interior
solution must join smoothly to Reissner — Nordstrom metric at the surface r = ro of the fluid
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distribution. For this requirement we must demand continuity of generating function at r =

lo.
2
1_2m+ej

roor

[ J
0

Equation (3.6) indicates that the continuity of the radial electric field assuming no
charge concentration at the boundary surface. One can easily see that there is no junction
condition imposed on the anisotropic function. W.

If we consider that charge density is constant then equation (2.12) implies that Q(r)
~ 12, The appropriate junction condition at ro yields.

(3.7) Q(r) =e(r/ro)®
Further, we assume
(3.8) G(r)=1—ar?
and

(3.9) W(r)=—ar?

Where a is a constant. This choice is also physically reasonable, because function G
(r) ~ 1 asr ~ 0. The value of constant is to be calculated in order to satisfy the boundary
conditions (3.5) and (3.6). Then

ror
(3.10) a=—2"2~

(ro - ez)
With help of equation (3.7) — (3.9), then expression of the solutions, from equations (2.20)—
(2.26), can be written as
(3.11) 8np, =8np, + 6Kr?

(3.12) 8np, =3a+8mp,(5ar’ —3)+ (35ar’ — 26)K°r’

(3.5) G(ro) =G™ (ro) = (

ar?

4(1—ar?)
[3a +8np, (5ar? — 2) + (35ar® — 26)K°r?]
(3.14) e —(L—ar®)(1+8np,r +5K?r?)

2

(3.13) 8op, =8np, +6K*r* +

315) " =——+—
( ) (1_ar2)l/2

where
K=elr]

We will consider again the choice
(3.16) G(r) = b (constant)
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(3.17) W (r) = c (constant)

(3.18) Q =Kr®

Substituting these values into equations (2.20) — (2.26), we get the expressions for physical
variables as

(3.19) 8mp, =8mp,r° +Vr? — NK*r?
(3.20) 8np,, =8nbp,(D—3)r° +(@—b—bv)r?—(1—b-5bN)K?r?

(3:21) 8np, =8nbp, [1— 4—(; (1+bD - 3b)} (o

C ) C 2.2
+[V—4—b(1—b)(l—v)}l‘ —[N—4—b(l+N—b—5bN)}Kl’

(3:22) e =8rbpr*” —(N+b)K’r* +b+V
(3.23) e” = A2r-b)/b

where
@28 D= (1-3b)(1—b+c)
b(l+b—c)

5b? —18b+5bc+c+1
(3.25) N= >

5b° -2b-5bc+c+1
626) V= gb ~1)(1-b+c)

b —-6b-bc+c+1
4, Discussion

The above solution represents the uniformly anisotropic charged fluid distribution
which is an anisotropic charged analogue of Tolman V solution with a slight change in

(1-b)

notation (his n corresponding to . For a neutral isotropic sphere (i.e. K=0, ¢ =0),

Tolman’s results are recovered. Out study is useful for insight into the effects of anisotropy
on star parameters.
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