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Abstract : 

  This papers presents new class of spherically symmetric solutions for charged 

anisotropic fluids in general relativity by using generating function. We have found 

expression for different physical variables.  
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1.  INTRODUCTION  

  Several workers in general relativity have focused their mind in the study of 

anisotropic fluid spheres [2, 6, 18, 19]. 

  In case of problems for massive objects in general relativity, the matter distribution 

is usually assumed to be locally isotropic. However, in the last few years theoretical studies 

on relativistic stellar models indicate that some massive objects may be locally anisotropic 

[1, 3, 8]. There are a number of interesting solutions that have provided insight into the 

effects of anisotropy on star parameters [4, 6, 7]. However, many of these solutions have a 

limited applicability to astrophysical situation since they do not satisfy certain physical 

restrictions usually imposed upon density and pressure viz., that the pressure should not 

exceed energy density (dominant energy condition) and that derivatives of pressure w.r.t. 

density should be less than or equal to unit. [1, 22, 23] macrocausatity conditions.  

  In recent years the solutions of Einstein’s field equations corresponding to fluid 

distribution with anisotropic pressure have generated great interest among physicists 

(Bowers and Liang [3], Cosenza et al. [4], Herrer et al. [6], Ponce de Leon [12, 13, 14]; 

Bayin [1], Stewart [22], Singh and Singh [17], Maharaj and Maartens [9,10]. These solutions 

are relevant in the study of relativistic astrophysics as model of compact object which has 

anisotropic pressure (Rudeman [16]. Recently Rago [15] has presented an anisotropic 

solution which is a generalization of static solution of isotropic fluid sphere (Berger et al.) 

[2]. Singh et al. [18-20] have studied static anisotropic fluid spheres with non-uniform 

density and in higher dimensional space-time. The charged matter distribution problems in 

general relativity also have received considerable attention. Patino and Rago [11] have found 

some new solutions for charged fluid spheres. Singh et al. [20] have extended Gaete and 

Hojman’s work [5] to the case of magneto fluids. 

  This paper provides some new class of solutions for charged anisotropic fluid spheres 

to general relativity by extending and using the work of Rago [15] in presence of an 

electromagnetic field. We have also found expression for physical variables like r mp ,p , 

etc. 

2. Field Equations and Conventions  

  We will consider the line element is given by 
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(2.1) 
2 v 2 2 2 2 2 2ds e dt e dr r (d sin d )        

where v and  are functions of radial coordinate r alone. Einstein’s field equation are  

(2.2)  ij ij ij ij

1
R Rg 8 (T E )

2
      

Where the energy-momentum tensor Tij for anisotropic fluid distribution is defined by 

(2.3)  
ij m r i j i jT ( p )u u p p )x x       

where ui is the fluid four – velocity vector 
i i /2 i

4u e ,x  is unit space-like vector in the 

radial direction 
i i /2

1x e  ,m is the energy density of matter, pr is the pressure in the 

direction of 
ix and p

 is the pressure on the two-space orthogonal to xi. 

  The energy-momentum tensor of electromagnetic field is given by 

(2.4)   
k ki

ij ik j ij ki

1 1
E g F F g F F

4 4

 
    

 

where Fij is the electromagnetic field tensor defined in terms of the four-potential Ai as 

(2.5)   
ij j,i i, jE A A   

The electromagnetic field equations are given by 

(2.6)   
ijk jk,i ki,iF F F 0    

(2.7)  
ij iF ; j 4 J   

  Here Ji is the four-current density. The combined Einstein-Maxwell equations for 

line element (2.1) can be expressed as 

(2.8)  

2

m 2 2 2

Q 1 1
8 e

r r r r

  
     

 
 

(2.9)  

2

t 4 2 2

Q 1 1
8 e

r r r r

  
     

 
 

(2.10)  

2 2

4

Q e
8 p

r 2 2 2 r





         
       

 
 

(2.11)  

2

r r m r 4

2 1 dQ
p (p ) (p p )

2 r 8 r dr



      


 

where  

(2.12)  
r

2

e
0

Q(r) 4 r dr    

is the charge within a sphere of radius r and charge density e is related to the proper charge 

density e by 

(2.13)  
/ 2

e ee
    

Equation (2.8) can be integrated to given 
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(2.14)  

2

2

2m(r) Q
e 1

r r

    

where we have introduced the mass function m(r) of the fluid distribution defined as  

(2.15)  
r

2

m
0

QQ
m(r) (4 r )dr

r


    

By use of equation (2.11) and (2.14), from equation (2.9), we have  

(2.16)  

2 2

r r4 2 2 2

Q 1 2m Q 1 2
8 1 2{p

r r r r r r

  
         

 
 

   r r m4

QQ
(p p ) }/ r(p )

4 r


 
     

  

Now, we define a generating function  

(2.17)  

2

2

2
2

r 2

2m Q
1

r r
G(r)

Q
1 8 p r

r

 
  

 

  

 

And an anisotropic function 

(2.18)  r

m r

4(p p )
W(r) G(r)

( p )



 

 

With help of equation (2.15), (2.17) and (2.18) equation (2.16) can be written as 

(2.19)  r r 4

(1 G w)(1 3g G r) QQ
p p

Gr(1 G W) 2 r (1 G W)

    
  

    
 

 

2

3 2

(1 G W) Q 2QQ
1 G G r (1 G G ) G

8 r G(1 G W) r r

  
        

    
 

  It is clear that for given G(r), W(r) and Q(r) as known functions of r, the linear 

differential equation (2.19) can be integrated to give the general solution  

(2.20)  
Bdr Bdr

r 0P e [P Ce dr]
     

where P0 is an arbitrary integration constant and function B(r) and C(r) are given by 

(2.21)  
(1 3G G r)(1 G W)

B(r)
rG(1 G W)

   


 
 

(2.22)  
4 3

QQ (1 G W)
C(r)

2 r (1 G W) 8 r g(1 G W)

  
 

     
 

   

2 2 2

2 2 2

Q Q 2QQ Q
1 1 G 1 G r

r r r r

    
         

    
 

Once, pr is known, the matter density m can be easily calculated from equations (2.15) and 

(1.17) obtaining 
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(2.23)  

2
2 3

m r2 2

1 2QQ Q
8 1 G(1 24 p r 8 p ,r

r r r

 
         

 
 

  

2 2
3

r 2

Q Q
G r 8 p r

r r

 
     
 

 

After obtaining pr (r) and m (r), the tangential pressure p
can be found from equation (2.18) 

(2.24)  m r
r

w( p )
p p

4G


 
   

Finally taking into account equations (2.11) and (2.14) – (2.17) the metric coefficients can 

be expressed as  

(2.25)  

2
2

r 2

Q
e G 1 8 p r

r

  
    

 
 

(2.26)  

2A dr
e exp

r rG

  
  

 
  

Here A2 is also an integration constant.  

3. Illustration of the Method  

  We should like to point out that any given function G(r) and change distribution Q(r) 

generate static, anisotropic spherically symmetric solutions of Einstein-Maxwell equations. 

For physically meaningful solution the generating function G must satisfy some general 

requirements. Assuming non-divergent pressure at the origin, the regularity conditions at the 

origin r = 0 [m(r)/r 0, Q2 / r2   0, e  1 as r   0] imply that 
t 0
limG(r) 1


 . If G = 1, 

W = 0 (pr = p
) and Q = 0 one obtains Minkowski flat space-time. 

  If we consider  

(3.1) 

2

2

0

2

2

2M e
1

r r
G

e
1

r

 
  

 
 
 

 

 

(3.2)  Q = e  

(3.3)  

1
2

2

2M e
e 1

r r



  
   
 

 

(3.4)  

2

2

2M e
e 1

r r

  
   
 

 

  By this way one gets, p0 = 0 in equation (2.20), a corresponding vacuum Reissner – 

Nordstrom solution, irrespective of the choice of the anisotropic function. Any interior 

solution must join smoothly to Reissner – Nordstrom metric at the surface r = r0 of the fluid 
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distribution. For this requirement we must demand continuity of generating function at r = 

r0. 

(3.5)   

2

2

RN 0

0 0 2

2

0

2m e
1

r r
G(r ) G (r )

e
1

r

 
  

  
 
 

 

 

(3.6)  
0Q(r ) e  

  Equation (3.6) indicates that the continuity of the radial electric field assuming no 

charge concentration at the boundary surface. One can easily see that there is no junction 

condition imposed on the anisotropic function. W. 

  If we consider that charge density is constant then equation (2.12) implies that Q(r) 

~ r2. The appropriate junction condition at r0 yields.  

(3.7)  Q(r) = e(r / r0)
3 

Further, we assume  

(3.8)  G(r) = 1 – ar2 

and  

(3.9)  W(r) = – ar2 

  Where a is a constant. This choice is also physically reasonable, because function G 

(r) ~ 1 as r ~ 0. The value of constant is to be calculated in order to satisfy the boundary 

conditions (3.5) and (3.6). Then 

(3.10)   

2

2

0 0

2

0

M e
2

r r
a

(r e )

 
 

 


 

With help of equation (3.7) – (3.9), then expression of the solutions, from equations (2.20)– 

(2.26), can be written as 

(3.11)  
2 2

r 08 p 8 p 6K r     

(3.12)  
2 2 3 2

m 08 3a 8 (5ar 3) (35ar 26)K r        

(3.13)  

2
2 2

0 2

ar
8 p 8 p 6K r

4(1 ar )
    


 

   
2 2 2 2

0[3a 8 p (5ar 2) (35ar 26)K r ]      

(3.14)  
2 2 2 2

0e (1 ar )(1 8 p r 5K r )       

(3.15)  

2

2 1/ 2

A
e

(1 ar )

 


 

where  

 
3

.0K e/ r  

We will consider again the choice  

(3.16)  G(r) = b (constant) 
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(3.17)  W (r) = c (constant) 

(3.18) Q = Kr3 

Substituting these values into equations (2.20) – (2.26), we get the expressions for physical 

variables as  

(3.19)  
D 2 2 2

r 08 p 8 p r Vr NK r       

(3.20)  
D 2 2 2

m 08 8 bp (D 3)r (1 b bv)r (1 b 5bN)K r            

(3.21)  
D

0

C
8 p 8 bp 1 (1 bD 3b) r

4b





 
      

 
 

 
2 2 2C C

V (1 b)(1 v) r N (1 N b 5bN) K r
4b 4b

   
           
   

 

(3.22)  
2 D 2 4

0e 8 bp r (N b)K r b V        

(3.23)  
2 (1 b) / be A r   

where  

(3.24)  
(1 3b)(1 b c)

D
b(1 b c)

  


 
 

(3.25)  

2

2

5b 18b 5bc c 1
N

5b 2b 5bc c 1

   


   
 

(3.26)  
2

(b 1)(1 b c)
V

b 6b bc c 1

  


   
 

 

4. Discussion  

  The above solution represents the uniformly anisotropic charged fluid distribution 

which is an anisotropic charged analogue of Tolman V solution with a slight change in 

notation (his n corresponding to 
(1 b)

2b


. For a neutral isotropic sphere (i.e. K = 0, c = 0), 

Tolman’s results are recovered. Out study is useful for insight into the effects of anisotropy 

on star parameters.  
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